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Abstract 

The Sprite operating system allows executing processes to be moved between hosts at any time. 
We use this process migration mechanism to offload work onto idle machines, and also to evict 

migrated processes when idle workstations are reclaimed by their owners. Sprite's migration mecha­
nism provides a high degree of transparency both for migrated processes and for users. Idle machines 
are identified, and eviction is invoked, automatically by daemon processes. On Sprite it takes 40---

50 milliseconds on DECstation 3100 workstations to perform a remote exec. The pmake program 
uses ezec-time migration to invoke compilations and other tasks concurrently, commonly producing 
speed-up factors in the range of three to six. Process migration has been in regular service for over 
a year. 

1 Introduction 

In a network of personal workstations, many machines are typically idle at any given 
time. These idle hosts represent a substantial pool of processing power, many times greater 
than what is available on any user's personal machine in isolation. In recent years a number 
of mechanisms have been proposed or implemented to harness idle processors (e.g., [14,17, 
19,20]). We have implemented process migration in the Sprite operating system for this 
purpose; this paper is a description of our implementation and our experiences using it. 

By "process migration" we mean the ability to move a process's execution site at any 
time from a source machine to a destination (or target) machine of the same architecture. 
In practice, process migration in Sprite usually occurs at two particular times. Most often, 
migration happens as part of the exec system call when a resource-intensive program is 
about to be initiated. Exec-time migration is particularly convenient because the process's 
virtual memory is reinitialized by the exec system call and thus need not be transferred from 
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the source to the target machine. The second common occurrence of migration is when a 

user returns to a workstation when processes have been migrated to it. At that time all 

the foreign processes are automatically evicted back to their home nodes to minimize their 

impact on the returning user's interactive response. 

Sprite's process migration mechanism provides an unusual degree of transparency. Pro­

cess migration is almost completely invisible both to processes and to users. In Sprite, 

transparency is defined relative to the home node for a process, which is the machine where 

the process would have executed if there had been no migration at all. A remote process 

(one that has been migrated to a machine other than its home) has exactly the same access 

to virtual memory, files, devices, and nearly all other system resources that it would have 

if it were executing on its home node. Furthermore, the process appears to users as if it 

were still executing on its home machine: its process identifier does not change, it appears 

in process listings on the home machine, and it may be stopped, restarted, and killed just 

like other processes. The only obvious sign that a process has migrated is that the load 

on the source machine suddenly drops and the load on the destination machine suddenly 

increases. 
Although many experimental process migration mechanisms have been implemented, 

Sprite's is one of only a few to receive extensive practical use (other notable examples are 

LOCUS [16] and MOSIX [4]). Sprite's migration facility has been in regular use for over a 

year. Our version of the make utility uses process migration automatically so that compila­

tions of different files (and other activities controlled by make) are performed concurrently. 

The speed-up from migration depends on the number of idle machines and the amount 

of parallelism in the task to be performed, but we commonly see speed-up factors of two 

or three in compilations and we occasionally obtain speed-ups as high as six or seven. In 

our environment, about 20-40% of all user activity is performed by processes that are not 

executing on their home node. 

In designing Sprite's migration mechanism, many alternatives were available to us. Our 

choice among those alternatives consisted of a tradeoff among four factors: transparency, 

residual dependencies, performance, and complexity. A high degree of transparency implies 

that processes and users need not act differently after migration occurs than before. If 

a migration mechanism leaves residual dependencies, the source machine must continue 

to provide some services for a process even after the process has migrated away from it. 

Residual dependencies are generally undesirable, since they impact the performance of the 

source machine and make the process vulnerable to failures of the source. By performance, 

we mean that the act of migration should be effi.cien t and that remote processes should 

(ideally) execute with the same efficiency as if they hadn't migrated. Lastly, complexity is 

an important factor because process migration tends to affect virtually every major piece 

of an operating system kernel. If the migration mechanism is to be maintainable, it is 

important to limit this impact as much as possible. 

Unfortunately, these four factors are in conflict with each other. For example, highly­

transparent migration mechanisms are likely to be more complicated and cause residual 

dependencies. High-performance migration mechanisms may transfer processes quickly at 

the cost of residual dependencies that degrade the performance of remote processes. A prac­

tical implementation of migration must make tradeoffs among the factors to fit the needs 

of its particular environment. As will be seen in the sections below, we emphasized trans­

parency and performance, but accepted residual dependencies in some situations. (See [2] 

for another discussion of the tradeoffs in migration, with a somewhat different result.) 
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A broad spectrum of alternatives also exists for the policy decisions that determine 

what, when, and where to migrate. For Sprite we chose a semi-automatic approach. The 

system helps to identify idle hosts, but it does not automatically migrate processes except 

for eviction. Instead, a few application programs like pmake identify long-running processes 

(perhaps with user assistance) and axrange for them to be migrated to idle machines. When 

users return to their machines, a system program automatically evicts any processes that 

had been migrated onto those machines. 

The rest of this paper is organized as follows. Section 2 describes the Sprite environment 

and how it affected our goals for migration. Section 3 discusses why we chose to implement 

process migration rather than some other simpler mechanism such as remote invocation. 

Section 4 describes the mechanics of process migration with an emphasis on the two most 

costly parts of migration in Sprite: virtual memory transfer and open file transfer. In Sec­

tion 5 we show how Sprite maintains the illusion that a remote process is still executing on its 

home machine; this is achieved in part by making Sprite kernel calls location-independent, 

and in part by forwarding operations between the remote machine and the home machine. 

Section 6 considers the issue of residual dependencies, and Section 7 discusses the policy 

issues associated with migration. Section 8 reports on the performance of process migration 

in Sprite, as well as the usage patterns we have experienced thus far. Section 9 discusses 

our experiences implementing and using migration, and Section 10 concludes the paper. 

2 The Sprite Environment 

Sprite is an operating system for a collection of personal workstations and file servers on 

a local axea network [15). Sprite's kernel-call interface is much like that of 4.3 BSD UNIX, 

but Sprite's implementation is a new one that provides a high degree of network integration. 

For example, all the hosts on the network share a common high-performance file system. 

Processes may access files or devices on any host, and Sprite allows file data to be cached 

around the network while guaranteeing the consistency of shared access to files [13). Each 

host runs a distinct copy uf the Sprite kernel, but the kernels work closely together using a 

remote-procedure-call (RPC) mechanism similar to that described by Birrell and Nelson [5). 

Four aspects of our environment were particularly important in the design of Sprite's 

process migration facility: 

Idle hosts are plentiful. Since our environment consists primarily of personal machines, 

it seemed likely to us that many machines would be idle at any given time. For 

example, Theimer reported that one-third of all machines were typically idle in a similar 

environment [19); Nichols reported that 50-70 workstations were typically idle during 

the day in an environment with 350 workstations total [14); and our own measurements 

in Section 8 show 65-85% of all workstations idle on average. The availability of 

many idle machines suggests that simple algorithms can be used for selecting where to 

migrate: there is no need to make complex choices among paxtially-loaded machines. 

Users "own" their workstations. A user who is sitting in front of a workstation expects 

to receive the full resources of that workstation. For migration to be accepted by our 

users, it seemed essential that migrated processes not degrade interactive response. 

This suggests that a machine should only be used as a target for migration if it is 

known to be idle, and that foreign processes should be evicted if the user returns 

before they finish. 
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Sprite uses kernel calls. Most other implementations of process migration are in message­

passing systems where all communication between a process and the rest of the world 

occurs through message channels. In these systems, many of the transparency aspects 

of migration can be handled simply by redirecting message communication to follow 

processes as they migrate. In contrast, Sprite processes are like UNIX processes in 

that system calls and other forms of interprocess communication are invoked by mak­

ing protected procedure calls into the kernel. In such a system the solution to the 

transparency problem is not as obvious; in the worst case, every kernel call might have 

to be specially coded to handle remote processes differently than local ones. 

Sprite already provides network support. We were able to capitalize on existing mech­

anisms in Sprite to simplify the implementation of process migration. For example, 

Sprite already provided remote access to files and devices, and it has a single network­

wide space of process identifiers; these features and others made it much easier to 

provide transparency in the migration mechanism. In addition, process migration was 

able to use the same kernel-to-kernel remote procedure call facility that is used for 

the network file system and many other purposes. On DECstation 3100 workstations 

(roughly 13 MIPS) running on a 10 megabits/second ethernet, the minimum round­

trip latency of a remote procedure call is about 1.0 milliseconds and the throughput 

is 450-650 Kbytes/second. Much of the efficiency of our migration mechanism can be 

attributed to the efficiency of the underlying RPC mechanism. 

To summarize our environmental considerations, we wished to offload work to machines 

whose users are gone, and to do it in a way that would not be noticed by those users when 

they returned. We also wanted the migration mechanism to work within the existing Sprite 

kernel structure, which had one potential disadvantage (kernel calls) and several potential 

advantages (network-transparent facilities and a fast RPC mechanism). 

3 Why Migration? 

Much simpler mechanisms than migration are already available for invoking operations 

on other machines. For example, the BSD versions of UNIX provide a shell command rsh, 

which takes as arguments the name of a machine and a command. Rsh causes the given 

command to be executed on the given remote machine [7]. 

Rsh has the advantages of being simple and readily available, but there were four reasons 

why we decided to implement a different mechanism: transparency, eviction, performance, 

and automatic selection. First, a process created by rsh does not run in the same environ­

ment as the parent process: the current directory may be different, environment variables 

are not transmitted to the remote process, and in some systems the remote process may 

not even have access to the same files and devices as the parent process. In addition, the 

user has no direct access to remote processes created by rsh: the processes do not appear 

in listings of the user's processes and they cannot be manipulated unless the user logs in to 

the remote machine. We felt that a mechanism with greater transparency than rsh would 

be easier for users to use. 

The second problem with rsh is that it does not permit eviction. A process started by 

rsh cannot be moved once it has begun execution. If a user returns to a machine with rsh­

generated processes, then either the user must tolerate degraded response until the foreign 

processes complete, or the foreign processes must be killed, which causes work to be lost and 
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annoyance to the user who owns the foreign processes. Nichols' butler system terminates 

foreign processes after warning the user and providing the processes with the opportunity 

to save their state, but Nichols noted that the ability to migrate existing processes would 

make butler "much more pleasant to use" [14). Another option is to run foreign processes at 

low priority so that a returning user receives acceptable interactive response, but this would 

slow down the execution of the foreign processes. It seemed us to that several opportunities 

for annoyance could be eliminated, both for the user whose jobs are offioaded and for the 

user whose workstation is borrowed, by evicting foreign processes when the workstation's 

user returns. 

The third problem with rsh is performance. Rsh uses standard network protocols with 

no particular kernel support; the overhead of establishing connections, checking access per­

missions, and establishing an execution environment may result in delays of several seconds. 

This makes rsh impractical for short-lived jobs and limits the speed-ups that can be obtained 

using it. 
The final problem with rsh is that it requires the user to pick a suitable destination 

machine for offioading. In order to make offioading as convenient as possible for users, 

we decided to provide an automatic mechanism to keep track of idle machines and select 

destinations for migration. 

Of course, an automated selection mechanism could easily have been layered on top of 

a remote execution facility like rsh (Nichols' butler is an example of this approach), and 

additional transparency features could also have been added, such as preserving the current 

directory. But at the time we began our design, we saw no way to eliminate all of the above 

problems within an existing framework. For example, eviction is impossible using rsh, as 

is complete transparency (open files cannot be transmitted from one machine to another). 

Thus we decided to implement a migration mechanism that allows processes to be moved 

at any time, to make that mechanism as transparent as possible, and to automate the 

selection of idle nodes. We felt that this combination of features would encourage the use 

of migration. We also recognized that this combination of features would probably result in 

a mechanism much more complex than rsh. As a result, one of our key criteria in choosing 

among implementation alternatives was simplicitj. 

4 Mechanics of Migration 

The techniques used to migrate a process depend on the state associated with the process 

being migrated. If there existed such a thing as a stateless process, then migrating such 

a process would be trivial. In reality processes have large amounts of state, and both the 

amount and variety of state seem to be increasing as operating systems evolve. The more 

state, the more complex the migration mechanism is likely to be. Process state typically 

includes the following: 

• Virtual memory. In terms of bytes, the greatest amount of state associated with a 

process is likely to be the memory that it accesses. Thus the time to migrate a process 

is limited by the speed of transferring virtual memory. 

• Open files. If the process is manipulating files or devices, then there will be state 

associated with these open channels, both in the virtual memory of the process and 

also in the operating system kernel's memory. The state for an open file includes 

the internal identifier for the file, the current access position, and possibly cached file 
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blocks. The cached file blocks may represent a substantial amount of storage, in some 

cases greater than the process's virtual memory. 

• Message channels. In a message- based operating system such as Mach [1] or V [ 6], 

state of this form would exist in place of open files. (In such a system message channels 

would be used to access files, whereas in Sprite, file-like channels are used for interpro­

cess communication.) The state associated with a message channel includes buffered 

messages plus information about senders and receivers. 

• Execution state. This consists of information that the kernel saves and restores 

during a context switch, such as register values and condition codes. 

• Other kernel state. Operating systems typically store other data associated with a 

process, such as the process's identifier, a user identifier, a current working directory, 

signal masks and handlers, resource usage statistics, references to the process's parent 

and children, and so on. 

For each portion of the state associated with a process, the system must do one of 

three things during migration: transfer the state, arrange for forwarding, or ignore the 

state and sacrifice transparency. To transfer a piece of state, it must be extracted from its 

environment on the source machine, transmitted to the destination machine, and reinstated 

in the process's new environment on that machine. For state that is private to the process, 

such as its execution state, state transfer is relatively straightforward. Other state, such 

as internal kernel state distributed among complex data structures, may be much more 

difficult to extract and reinstate. An example of "difficult" state in Sprite is information 

about open files, particularly those being accessed on remote file servers. Lastly, some state 

may be impossible to transfer. Such state is usually associated with physical devices on the 

source machine. For example, the frame buffer associated with a display must remain on 

the machine containing the display; if a process with access to the frame buffer migrates, it 

will not be possible to transfer the frame buffer. 

The second option for each piece of state is to arrange for forwarding. Rather than 

transfer the state to stay with the process, the system may leave the state where it is and 

forward operations back and forth between the state and the process. For example, I/0 

devices cannot be transferred, but the operating system can arrange for output requests 

to be passed back from the process to the device, and for input data to be forwarded 

from the device's machine to the process. In the case of message channels, arranging for 

forwarding might consist of changing sender and receiver addresses so that messages to and 

from the channel can find their way from and to the process. Ideally, forwarding should be 

implemented transparently, so that it is not obvious outside the operating system whether 

the state was transferred or forwarding was arranged. 

The third option, sacrificing transparency, is a last resort: if neither state transfer nor 

forwarding is feasible, then one can ignore the state on the source machine and simply use 

the corresponding state on the target machine. The only situation in Sprite where neither 

state transfer nor forwarding seemed reasonable is for memory-mapped I/0 devices such as 

frame buffers, as alluded to above. In our current implementation, we disallow migration 

for processes using these devices. 

In a few rare cases, lack of transparency may be desirable. For example, a process 

that requests the amount of physical memory available should obtain information about its 

current host rather than its home node. For Sprite, a few special-purpose kernel calls, such 

as to read instrumentation counters in the kernel, are also intentionally non-transparent 
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with respect to migration. In general, though, it would be unfortunate if a process behaved 

differently after migration than before. 

The subsections below describe how Sprite deals with the various components of process 

state during migration. The solution for each component consists of some combination of 

transferring state and arranging for forwarding. 

4.1 Virtual Memory Transfer 

Virtual memory transfer is the aspect of migration that has been discussed the most 

in the literature, perhaps because it is believed to be the limiting factor in the speed of 

migration [21]. One simple method for transferring virtual memory is to send the process's 

entire memory image to the target machine at migration time, as in Charlotte [2] and 

LOCUS [16]. This approach is simple but it has two disadvantages. First, the transfer can 

take many seconds, during which time the process is frozen: it cannot execute on either the 

source or destination machine. For some processes, particularly those with real-time needs, 

long freeze times may be unacceptable. The second disadvantage of a monolithic virtual 

memory transfer is that it may result in wasted work for portions of the virtual memory that 

are not used by the process after it migrates. The extra work is particularly unfortunate 

(and costly) if it requires old pages to be read from secondary storage. For these reasons, 

several other approaches have been used to reduce the overhead of virtual memory transfer; 

the mechanisms are diagrammed in Figure 1 and described in the paragraphs below. 

In the V System, Theimer addressed the issue of long freeze times with a method called 

pre-copying [18,19]. Rather than freezing a process at the beginning of migration, V allows 

the process to continue executing while its address space is transferred. Some pages could 

be modified on the source machine after they have been copied to the destination, so V 

then freezes the process and copies the pages that were modified. Theimer showed that pre­

copying reduces freeze times substantially. However, it has the disadvantage of copying some 

pages twice, which increases the total amount of work to migrate a process. Pre-copying 

seems most useful in an environment like V where processes have real-time deadlines. 

The Accent system uses a lazy copying approach to reduce the cost of process migra­

tion [20,21]. When a process migrates in Accent, its virtual memory pages are left on the 

source machine until they are actually referenced on the target machine. Pages are copied 

to the target when they are referenced for the first time. This approach allows a process to 

begin execution on the target with minimal freeze time but introduces many short delays 

later as pages are retrieved from the source machine. Overall, lazy copying reduces the cost 

of migration because pages that are not used are never copied at all. Zayas found that for 

typical programs only one-quarter to one-half of a process's allocated memory needed to be 

transferred. One disadvantage of lazy copying is that it leaves residual dependencies on the 

source machine: the source must store the unreferenced pages and provide them on demand 

to the target. In the worst case, a process that migrates several times could leave virtual 

memory dependencies on any or all of the hosts on which it ever executed. 

Sprite's migration facility uses a different form of lazy copying that takes advantage 

of our existing network services while providing some of the advantages of lazy copying. 

In Sprite, backing storage for virtual memory is implemented using ordinary files. Since 

these backing files are stored in the network file system, they are accessible throughout the 

network. During migration the source machine freezes the process, flushes its dirty pages 

to backing files, and discards its address space. On the target machine, the process starts 
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VM Transfer Techniques 

time 

~wmce 
---"""'~=-==f""'"""""""""""""""'~""~ target 

(a) LOCUS, Charlotte 

~so=e 
. target 

(b) v 

(c) Accent 

(d) Sprite 

~ process executes I 
residual dependencies end 

- transfer virtual memory 

Figure 1: Different techniques for transferring virtual memory. (a) shows the scheme used in 

LOCUS and Charlotte, where the entire address space is copied at the time a process migrates. (b) 

shows the pre-copying scheme used in V, where the virtual memory is transferred during migration 

but the process continues to execute during most of the transfer. (c) shows Accent's lazy-copying 

approach, where pages are retrieved from the source machine as they are referenced on the target. 

(d) shows Sprite's approach, where dirty pages are flushed to a file server during migration and the 

target retrieves pages from the file server as they are referenced. 
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executing with no resident pages and uses the standard paging mechanisms to load pages 

from backing files as they are needed. 

In most cases no disk operations are required to flush dirty pages in Sprite. This is 

because the backing files are stored on network file servers and the file servers use their 

memories to cache recently-used file data. When the source machine flushes a dirty page 

it is simply transferred over the network to the server's main-memory file cache. If the 

destination machine accesses the page then it is retrieved from the cache. Disk operations 

will only occur if the server's cache overflows. 

Sprite's virtual memory transfer mechanism was simple to implement because it uses 

pre-existing mechanisms both for flushing dirty pages on the source and for handling page 

faults on the target. It has some of the benefits of the Accent lazy-copying approach since 

only dirty pages incur overhead at migration time; other pages are sent to the target machine 

when they are referenced. Our approach will require more total work than Accent's, though, 

since dirty pages may be transferred over the network twice: once to a file server during 

flushing, and once later to the destination machine. 

The Sprite approach to virtual memory transfer fits well with the way migration is 

typically used in Sprite. Process migration occurs most often during an exec system call, 

which completely replaces the process's address space. If migration occurs during an exec, 

the new address space is created on the destination machine so there is no virtual memory to 

transfer. As others have observed (e.g., LOCUS [16]), the performance of virtual memory 

transfer for exec-time migration is not an issue. Virtual memory transfer is an issue, 

however, when migration is used to evict a process from a machine whose user has returned. 

In this situation the most important consideration is to remove the process from its source 

machine quickly, in order to minimize any performance degradation for the returning user. 

Sprite's approach works well in this regard since (a) it does the least possible work to free 

up the source's memory, and (b) the source need not retain pages or respond to later paging 

requests as in Accent. It would have been more efficient overall to transfer the dirty pages 

directly to the target machine instead of a file server, but this approach would have added 

complexity to the migration mechanism so we decided against it. 

Virtual memory transfer becomes much more complicated if the process to be migrated 

is sharing writable virtual memory with some other process on the source machine. In 

principle, it is possible to maintain the shared virtual memory even after one of the sharing 

processes migrates [11], but this changes the cost of shared accesses so dramatically that 

it seemed unreasonable to us. Shared writable virtual memory almost never occurs in 

Sprite right now, so we simply disallow migration for processes using it. A better long-term 

solution is probably to migrate all the sharing processes together, but even this may be 

impractical if there are complex patterns of sharing that involve many processes. 

4.2 Migrating Open Files 

It turned out to be particularly difficult in Sprite to migrate the state associated with 

open files. This was surprising to us, because Sprite already provided a highly transparent 

network file system that supports remote access to files and devices; it also allows files to 

be cached and to be accessed concurrently on different workstations. Thus, we expected 

that the migration of file-related information would mostly be a matter of reusing existing 

mechanisms. Unfortunately, process migration introduced new problems in managing the 

distributed state of open files. Migration also made it possible for a file's current access 
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position to become shared among several machines. 

The migration mechanism would have been much simpler if we had chosen the "arrange 

for forwarding" approach for open files instead of the "transfer state" approach. This would 

have implied that all file-related kernel calls be forwarded back to the machine where the file 

was opened, so that the state associated with the file could have stayed on that machine. 

Because of the frequency of file-related kernel calls and the cost of forwarding a kernel 

call over the network, we felt that this approach would be unacceptable both because it 

would slow down the remote process and because it would load the machine that stores the 

file state. Sprite workstations are typically diskless and files are accessed remotely from file 

servers, so the forwarding approach would have meant that each file request would be passed 

over the network once to the machine where the file was opened, and possibly a second time 

to the server. Instead, we decided to transfer open-file state along with a migrating process 

and then use the normal mechanisms to access the file (i.e., communicate directly with the 

file's server). 
There are three main components of the state associated with an open file: a file ref­

erence, caching information, and an access position. Each of these components introduced 

problems for migration. The file reference indicates where the file is stored, and also provides 

a guarantee that the file exists (as required by UNIX semantics): if a file is deleted while 

open then the deletion is deferred until the file is closed. Our first attempt at migrating files 

simply closed the file on the source machine and reopened it on the target. Unfortunately, 

this approach caused files to disappear if they were deleted before the reopen completed. 

This is such a common occurrence in UNIX programs that file transfer had to be changed 

to move the reference from source to target without ever closing the file. 

The second component of the state of an open file is caching information. Sprite permits 

the data of a file to be cached in the memory of one or more machines, with file servers 

responsible for guaranteeing "consistent access" to the cached data [13]. The server for a 
file keeps track of which hosts have the file open for reading and writing. If a file is open 

on more than one host and at least one of them is writing it, then caching is disabled: all 

hosts must forward their read and write requests for t~at file to the server so they can be 

serialized. In our second attempt at migrating files, the server was notified of the file's use 

on the target machine before being told that the file was no longer in use on the source; 

this made the file appear to be write-shared and caused the server to disable caching for 

the file unnecessarily. To solve both this problem and the reference problem above we built 

special server code just for migrating files, so that the transfer from source to destination 

is made atomically. Migration can still cause caching to be disabled for a file, but only if 

the file is also in use by some other process on the source machine; if the only use is by the 

migrating process, then the file will be cacheable on the target machine. 

When an open file is transferred during migration, the file cache on the source machine 

may contain modified blocks for the file. These blocks are flushed to the file's server machine 

during migration, so that after migration the target machine can retrieve the blocks from 

the file server without involving the source. This approach is similar to the mechanism for 

virtual memory transfer and thus has the same advantages and disadvantages. It is also 

similar to what happens in Sprite for shared file access without migration: if a file is opened, 

modified, and closed on one machine, then opened on another machine, the modified blocks 

are flushed from the first machine's cache to the server at the time of the second open. 

The third component of the state of an open file is an access position, which indicates 

where in the file the next read or write operation will occur. Unfortunately the access 
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Transferring Open Files 

:~ 

(2) 

(1) (4) (3) 

Network 

Figure 2: Transferring open files. (1) The source notifies the file server that an open file will 

be migrated, then (2) passes information about the file to the target. (3) The target notifies the 

server that the open file has been moved; ( 4) during this call the server communicates again with 

the source to transfer state about the file. 

position for a file may be shared between two or more processes. This happens, for example, 

when a process opens a file and then forks a child process: the child inherits both the open 

file and the access position. Under normal circumstances all of the processes sharing a single 

access position will reside on the same machine, but migration can move one of the processes 

without the others, so that the access position becomes shared between machines. After 

several false starts we eventually dealt with this problem in a fashion similar to caching: 

if an access position becomes shared between machines, then neither machine stores the 

access position (nor do they cache the file); instead, the file's server maintains the access 

position and all operations on the file are forwarded to the server. 

Another possible approach to shared file offsets is the one used in LOCUS [16]. If 

process migration causes a file access position to be shared between machines, LOCUS lets 

the sharing machines take turns managing the access position. In order to perform I/0 on 

a file with a shared access position, a machine must acquire the "access position token" for 

the file. While a machine has the access position token it caches the access position and 

no other machine may access the file. The token rotates among machines as needed to give 

each machine access to the file in turn. This approach is similar to the approach LOCUS 

uses for managing a shared file, where clients take turns caching the file and pass read and 

write tokens around to ensure cache consistency. 
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Figure 2 shows the mechanism currently used by Sprite for migrating open files. The 

key part of this mechanism occurs in a. late phase of migration when the target machine 

requests that the server update its internal tables to reflect that the file is now in use on 

the target instead of the source. The server in turn calls the source machine to retrieve 

information about the file, such as the file's access position and whether the file is in use by 

other processes on the source machine. This two-level remote procedure call synchronizes 

the three machines (source, target, and server) and provides a convenient point for updating 

state about the open file. 

4.3 The Process Control Block 

Aside from virtual memory and open files, the main remaining issue is how to deal with 

the process control block (PCB) for the migrating process: should it be left on the source 

machine or transferred with the migrating process? For Sprite we use a. combination of both 

approaches. The home machine for a process (the one where it would execute if there were 

no migration) must assist in some operations on the process (see Section 5 for details), so 

it always maintains a. PCB for the process. In addition, the current machine for a. process 

also has a. PCB for it. If a. process is migrated, then most of the information about the 

process is kept in the PCB on its current machine; the PCB on the home machine serves 

primarily to locate the process and most of its fields are unused. 

The other elements of process state besides virtual memory and open files are much 

easier to transfer than virtual memory and open files, since they are not as bulky as virtual 

memory and they don't involve distributed state like open files. At present the other state 

consists almost entirely of fields from the process control block. In general, all that needs to 

be done is to transfer these fields to the target machine and reinstate them in the process 

control block on the target. 

4.4 The Fragility Problem 

One problem with process migration is that it involves state that is manipulated by 

virtually every major module in the kernel. This makes it hard to separate the implemen­

tation of migration from the implementation of the other kernel modules, since changes in 

one can affect the other. As a result, migration has been one of the most fragile parts of the 

Sprite kernel. It often breaks when seemingly unrelated parts of the kernel are modified. 

We believe that the problem is inherent in the nature of migration (Theimer had similar 

problems in his implementation), but we've used two techniques to lessen the difficulties. 

Our first approach to the problem of migration fragility was to introduce migration 

version numbers. Before we started using migration version numbers it was very difficult to 

make any changes in the migration mechanism. During the testing period for the changes, 

some kernels would be running the new version and some the old. Invariably, attempts 

would be made to migrate between new and old kernels, and the result was inevitably a 

crash of one or both machines. The only way to prevent these crashes was to reboot the 

entire Sprite world whenever we made an incompatible change. \Ve now associate a version 

number with migration, which is incremented whenever any aspect of the migration protocol 

changes. Migration is disallowed between machines with different version numbers, so that 

incompatible versions can coexist in the same network. 
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Our second approach is to avoid centralizing the migration code in one place. Instead, 

we have distributed it among the various kernel modules whose state is affected. By placing 

the migration-related code next to the other code that manipulates state information, we 

hope it will be easier to keep the two consistent. For each piece of state that must be 

considered during migration there exist four procedures that are invoked during migration 

(see Section 4.5 for details). All that is needed to deal with additional state during migration 

is to write the four procedures for that state and enter their names into a table used during 

migration. At present the table contains entries for the following pieces of state: basic 

machine-independent process state, machine-dependent execution state, virtual memory, 

files, signals, profiling, and arguments to exec. 

4.5 Migration Procedure 

The overall algorithm for migrating a process from a source machine to a target machine 

is table-driven, as described in the previous section, and involves the following steps: 

1. The process is signaled to make it trap into the kernel. (At the point when the signal 

is handled, the state of the process within the kernel is simple and well-defined.) 

2. The target of the migration is contacted to confirm that it is running, that it is available 

for migration, and that it has the same migration version number as the source. The 

kernel on the target host allocates a new process control block and returns a token 

that is later used to identify the new instantiation of the process on the target. 

3. For each module with process state that must be transferred to the new host, the 

source kernel calls a pre-migration routine to obtain the size of the encapsulated data. 

This routine may, as a side effect, initiate any actions required to migrate state: for 

example, the virtual memory pre-migration routine queues the process's modified pages 

for flushing. 

4. The source kernel allocates a buffer to hold the combined encapsulated state. 

5. For each module, the source kernel calls an encapsulation routine to place that module's 

state into a portion of the buffer. As with the pre-migration routines, encapsulation 

routines may have side effects, such as waiting for modified pages to be flushed or 

communicating with file servers for open files. 

6. The source kernel passes the encapsulated state to the target kernel via a single remote 

procedure call. On the target, the corresponding de-encapsulation routine is invoked 

for each portion of the buffer. 

7. For each module, if a post-migration routine has been specified, the kernel on the 

source host invokes the procedure to clean up any remaining state. 

8. The source kernel frees the buffer and informs the target to resume the process. 

5 Supporting Transparency: Home Machines 

As discussed in Section 3, transparency was one of our most important goals in imple­

menting migration. By "transparency" we mean two things in particular. First, a process's 

behavior should not be affected by migration. Its execution environment should appear 

the same, it should have the same access to system resources such as files and devices, and 

it should produce exactly the same results as if it hadn't migrated. Second, a process's 

13 



appearance to the rest of the world should not be affected by migration. To the rest of 

the world the process should appear as if it never left its original machine, and any opera­

tion that is possible on an unmigrated process (such as stopping, debugging, or signalling) 

should be possible on a migrated process. 

Both of these two aspects of transparency are defined with respect to a process's home 

machine, which is the machine where it would execute if there were no migration at all. 

Even after migration, everything should appear as if the process were still executing on its 

home machine. As will be seen below, Sprite achieves transparency by involving the home 

machine in some operations for remote processes. 

5.1 Messages Versus Kernel Calls 

On the surface, it might appear that transparency is particularly easy to achieve in a 

message-based system like Accent [21], Charlotte [2], or V [6]. In these systems all of a 

process's interactions with the rest of the world occur in a uniform fashion through message 

channels. All that is needed to guarantee transparency is to preserve the behavior of the 

message channels by forwarding messages to and from a remote process's new location. 

This is typically done by updating addresses in the endpoints of the message channels. For 

example, Charlotte updates the addresses at the time of migration, while V waits until the 

old incorrect address is used and then updates the address using a multi-cast protocol. 

In contrast, transparency might seem harder to achieve in a system like Sprite that is 

based on kernel calls. In such a system the state of the process is expected to be in the 

kernel of the machine where the process executes. This requires that the state be transferred 

during migration, which is more complicated than forwarding. 

It turns out that neither of these initial impressions is correct. For example, it would be 

possible to implement forwarding in a kernel-call-based system by leaving all of the kernel 

state on the home machine and using remote procedure call to forward home every kernel 

call [12]. This would result in an approach very similar to forwarding messages, and our 

initial plan was to use an approach like this for Sprite. 

Unfortunately, an approach based entirely on forwarding kernel calls or forwarding mes­

sages will not work in practice, for two reasons. The first problem is that some services 

must necessarily be provided on the machine where a process is executing. If a process 

invokes a kernel call to allocate virtual memory (or if it sends a message to a memory 

server to allocate virtual memory), the request must be processed by the kernel or server 

on the machine where the process executes, since only that kernel or server has control 

over the machine's page tables. Forwarding is not a viable option for such machine-specific 

functions: state for these operations must be migrated with processes. The second problem 

with forwarding is cost. It will often be much more expensive to forward an operation to 

some other machine than to process it locally. If a service is available locally on a remote 

process's new machine, it will be more efficient to use the local service than to forward 

operations back to the service on the process's old machine. 

5.2 Achieving Transparency 

Transparency is achieved in practice by combining several approaches. We used four 

different techniques in Sprite. The most desirable approach is to make kernel calls location­

independent; Sprite has been gradually evolving in this direction. For example, in the early 
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versions of the system we permitted different machines to have different views of the file 

system name space. This required open and several other kernel calls to be forwarded home 

after migration, imposing about a 20% penalty on the performance of remote compilations. 

In order to simplify migration (and for several other good reasons also), we changed the 

file system so that every machine in the network sees the same name space. This made the 

open kernel call location-independent, so no extra effort was necessary to make open work 

transparently for remote processes. 

Another example of the evolution toward transparency is the kill kernel call, which sends 

a signal to a process. Sprite has a single network-wide name space for process identifiers, 

and we made kill work regardless of whether the process being signalled was on the same 

machine as the process issuing the kernel call; this allowed kill to be used transparently by 

remote processes. 

Our second technique was to transfer state from the source machine to the target at 

migration time, so that normal kernel calls may be used after migration. For example, 

a process's virtual memory is transferred at migration time so that the kernel's virtual­

memory-related state for a remote process is identical to that for an unmigrated process. 

This allowed us to use the normal virtual-memory-related kernel calls for remote processes 

without any loss of transparency. We also used the state-transfer approach for open files, 

process and user identifiers, resource usage statistics, and a variety of other things. 

Our third technique was to forward kernel calls home. This technique was originally used 

for a large number of kernel calls, but we have gradually replaced most uses of forwarding 

with transparency or state transfer. At present there are only a few kernel calls that 

cannot be implemented transparently and for which we cannot easily transfer state. The 

most important such kernel call is gettimeofday, which returns the current time. Clocks 

are not synchronized between Sprite machines, so for remote processes Sprite forwards the 

gettimeofday kernel call back to the home machine. This guarantees that time advances 

monotonically even for remote processes, but incurs a performance penalty for processes 

that read the time frequently. 

Forwarding also occurs from the home machine to a remote process's current machine. 

For example, when a process is signalled (e.g., when some other process specifies its identifier 

in the kill kernel call), the signal operation is sent initially to the process's home machine. 

If the process is not executing on the home machine, then the home machine forwards the 

operation on to the process's current machine. The performance of such operations could 

be optimized by retaining a cache on each machine of recently used process identifiers and 

their last known execution sites. This approach is used in LOCUS and V and allows many 

operations to be sent directly to a remote process without passing through another host. 

An incorrect execution site is detected the next time it is used and correct information is 

found by sending a message to the host on which the process was created (LOCUS) or by 

multi-casting (V). 

The fourth "approach" is really just a set of ad hoc techniques for a few kernel calls that 

must update state on both a process's current execution site and its home machine. One 

example of such a kernel call is fork, which creates a new process. Process identifiers in 

Sprite consist of a home machine identifier and an index of a process within that machine. 

Management of process identifiers, including allocation and deallocation, is the responsi­

bility of the home machines named in the identifiers. If a remote process forks, the child 

process must have the same home machine as the parent, which requires that the home 

machine allocate the new process identifier. Furthermore, the home machine must initialize 
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its own copy of the process control block for the process, as described in Section 4.3. Thus, 

even though the child process will execute remotely on the same machine as its parent, both 

its current machine and its home machine must update state. Similar kinds of cooperation 

occur for exit, which is invoked by a process to terminate itself, and wait, which is used by 

a parent to wait for one of its children to terminate. There are several potential race condi­

tions between a process exiting, its parent waiting for it to exit, and one or both processes 

migrating; we found it easier to synchronize these operations by keeping all the state for 

the wait-exit rendezvous on a single machine (the home). LOCUS similarly uses the site 

on which a process is created to synchronize operations on the process. 

6 Residual Dependencies 

We define a residual dependency as an on-going need for a host to maintain data struc­

tures or provide functionality for a process even after the process migrates away from the 

host. One example of a residual dependency occurs in Accent, where a process's virtual 

memory pages are left on the source machine until they are referenced on the target. An­

other example occurs in Sprite, where the home machine must participate whenever a 

remote process forks or exits. 

Residual dependencies are undesirable for three reasons: reliability, performance, and 

complexity. Residual dependencies decrease reliability by allowing the failure of one host 

to affect processes on other hosts. Residual dependencies decrease performance for the 

remote process because they require remote operations where local ones would otherwise 

have sufficed. Residual dependencies also add to the load of the host that is depended 

upon, thereby reducing the performance of other processes executing on that host. Lastly, 

residual dependencies complicate the system by distributing a process's state around the 

network instead of concentrating it on a single host; a particularly bad scenario is one 

where a process can migrate several times, leaving residual dependencies on every host it 

has visited. 

Despite the disadvantages of residual dependencies, it may be impractical to eliminate 

them all. In some cases dependencies are inherent, such as when a process is using a 

device on a specific host; these dependencies cannot be eliminated without changing the 

behavior of the process. In other cases, dependencies are necessary or convenient to maintain 

transparency. Lastly, residual dependencies may actually improve performance in some 

cases, such as lazy copying in Accent, by deferring state transfer until it is absolutely 

necessary. 

In Sprite we were much more concerned about transparency than about reliability, so 

we permitted some residual dependencies on the home machine where those dependencies 

made it easier to implement transparency. As described in Section 5 above, there are only 

a few situations where the home machine must participate so the performance impact is 

minimal (see Section 8 for measurements). 

Although Sprite permits residual dependencies on the home machine, it does not leave 

dependencies on any other machines. If a process migrates to a machine and is then evicted 

or migrates away for any other reason, there will be no residual dependencies on that 

machine. This provides yet another assurance that process migration will not impact users' 

response when they return to their workstations. The only noticeable long-term effect 

of foreign processes is the resources they may have utilized during their execution: in 
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particular, the user's virtual memory working set may have to be demand-paged back into 

memory upon the user's return. 

The greatest drawback of residual dependencies on the home node is the inability of users 

to migrate processes in order to survive the failure of their home node. \Ve a.re considering 

a nontransparent variant of process migration, which would change the home node of a 

process when it migrates and break all dependencies on its previous host. 

7 Migration Policies 

Until now we have focussed our discussion on the mechanisms for transferring processes 

and supporting remote execution. This section considers the policies that determine how 

migration is used. Migration policy decisions fall in to four categories: 

What. Which processes should be migrated? Should all processes be considered candidates 

for migration, or only a few particularly CPU-intensive processes? How are CPU­

intensive processes to be identified? 

When. Should processes only be migrated at the time they are initiated, or may processes 

also be migrated after they have been running? 

Where. What criteria should be used to select the machines that will be the targets of 

migration? 

Who. \Vho makes all of the above decisions? How much should be decided by the user 

and how much should be automated in system software? 

At one end of the policy spectrum lies the pool of processors model. In this model 

the processors of the system are treated as a shared pool and all of the above decisions 

are made automatically by system software. Users submit jobs to the system without any 

idea of where they will execute. The system assigns jobs to processors dynamically, and if 

process migration is available it may move processes during execution to balance the loads 

of the processors in the pool. MOSIX [4) is on(; example of the "pool of processors" model: 

processors are shared equally by all processes and the system dynamically balances the load 

throughout the system, using process migration. 

At the other end of the policy spectrum lies rsh, which provides no policy support what­

soever. In this model individual users are responsible for locating idle machines, negotiating 

with other users over the use of those machines, and deciding which processes to offload. 

For Sprite we chose an intermediate approach where the selection of idle hosts is fully 

automated but the other policy decisions are only partially automated. There were two 

reasons for this decision. First, our environment consists of personal workstations. Users 

are happy running almost all of their processes locally on their own personal workstations, 

and they expect to have complete control of their workstations. Users do not think of their 

workstations as "shared". Second, the dynamic pool-of-processors approach appeared to us 

to involve considerable additional complexity, and we were not convinced that the benefits 

would justify the implementation difficulties. For example, most processes in a UNIX-like 

environment are so short-lived that migration will not produce a noticeable benefit and 

may even slow things down. Eager et al. provide additional evidence that migration is only 

useful under particular conditions [10). Thus, for Sprite we decided to make migration a 

special case rather than the normal case. 
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The Sprite kernels provide no particular support for any of the migration policy deci­

sions, but user-level applications provide assistance in four forms: idle-host selection, the 

pmake program, a mig shell command, and eviction. These are discussed in the following 

subsections. 

7.1 Selecting Idle Hosts 

Each Sprite machine runs a background process called the load-average daemon, which 

monitors the usage of that machine. When the workstation appears to be idle, the load­

average daemon notifies the rest of the system that the machine is ready to accept migrated 

processes. Programs that invoke migration, such as pmake and mig described below, call a 

standard library procedure Mig_GetldleNode to return the identifier of an idle host, which 

they then pass to the kernel when they invoke migration. No other process is allowed to use 

that host for remote execution until the process relinquishes it via the Mig_Done library 

call. (In some environments, multiple processes might be able to make effective use of a 

single idle host, but the applications that have used the migration facility thus far work 

well with exclusive access.) 

Maintaining the database of idle hosts can be a challenging problem in a distributed 

system, particularly if the system is very large in size or if there are no shared facilities avail­

able for storing load information. A number of distributed algorithms have been proposed 

to solve this problem, such as disseminating load information among hosts periodically [4], 

querying other hosts at random to find an idle one [9], or multicasting and accepting a 

response from any host that indicates availability [18]. 

Since Sprite has a shared network file system, we were able to store the idle-host database 

in a shared file. The load-average daemons set flags in the file when their hosts become 

idle, and the Mig_GetldleNode library procedure selects an idle host at random from the 

file, marking the selected host so that no one else selects it. Standard file-locking primitives 

are used to synchronize access to the file. 

The shared-file approach is a particularly simple one, but it has a number of disadvan­

tages. It does not retain state from request to request, making it difficult to implement 

features like reassigning the same machine to the same user (in order to reuse files that 

might have been cached on the machine), or fair allocation of idle hosts when there are 

more would- be users than idle machines. Although these features could conceivably be im­

plemented with a shared file, there would be a high overhead from repeated communication 

with a file server. The shared-file approach also provides inadequate protection of informa­

tion about idle hosts, since the shared file must be made readable and writable by all users. 

It requires explicit deallocation of hosts when they are no longer used by an application, and 

the abnormal termination of a program using idle hosts can leave a host marked as in-use 

for a prolonged period of time. We are currently exploring a different approach where a 

centralized server process maintains the database of idle hosts, makes allocation decisions, 

and detects when hosts are no longer in use for remote execution. 

We chose a conservative set of criteria for determining whether a machine is "idle". 

The load-average daemon currently will only consider a host to be idle if (a) it has had 

no keyboard or mouse input for at least five minutes, and (b) there are fewer runnable 

processes than processors, on average. In choosing these criteria we wanted to be certain not 

to inconvenience active users or delay background processes they might have left running. 

We assumed that there would usually be plenty of idle machines to go around, so we were 
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less concerned about using them efficiently. In Section 10 below, we discuss our choice of 

criteria in light of our experience. 

7.2 Pmake and Mig 

Sprite provides two convenient ways to use migration. The most common use of pro­

cess migration is by the pmake program. Pmake is similar in function to the make UNIX 

utility and is used, for example, to detect when source files have changed and recompile 

the corresponding object files. Make performs its compilations and other actions serially; 

in contrast, pmake uses process migration to invoke as many commands in parallel as there 

are idle hosts available. This use of process migration is completely transparent to users 

and results in substantial speed-ups in many situations (see Section 8 for performance mea­

surements). Other systems besides Sprite have also benefitted from parallel make facilities; 

see [3] and [17] for examples. 

The approach used by pmake has at least one advantage over a fully-automatic "pro­

cessor pool" approach where all the migration decisions are made centrally. Because pmake 

makes the choice of processes to offload, and knows how many hosts are available, it can 

scale its parallelism to match the number of idle hosts. If the offi.oading choice were made by 

some other agent, pmake might overload the system by creating more processes than could 

be accommodated efficiently. Pmake also provides a degree of flexibility by permitting the 

user to specify that certain tasks should not be offi.oaded if they are poorly suited for remote 

execution. 
The second easy way to use migration is with a program called mig, which takes as 

argument a shell command. Mig will select an idle node using the mechanism described 

above and use process migration to execute the given command on that machine. Mig may 

also be used to migrate an existing process. 

Although these are the only two mechanisms commonly used for process migration at 

present, we hope that our users will find other ways to use migration to speed up their 

applications. 

7.3 Eviction 

The final form of system support for migration is eviction. The load-average daemons 

described in Section 7.1 detect when a user returns. On the first keystroke or mouse-motion 

invoked by the user, the load-average daemon will check for foreign processes and evict them. 

At present, eviction causes the processes to be migrated back to their home machines. A 

better approach would be to check first for other idle machines and migrate the foreign 

processes there rather than home, but automatic remigration has not been a high priority 

thus far because remote applications are relatively short-lived. 

8 Performance and Usage Patterns 

We evaluated process migration in Sprite by taking three sets of measurements. Sec­

tion 8.1 discusses particular operations in isolation, such as the time to migrate a trivial 

process or invoke a remote command. Section 8.2 describes the performance improvement 

of pmake using parallel remote execution. Section 8.3 presents empirical measurements of 

Sprite's process migration facility over a period of several weeks, including the extent to 
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Action Time/Rate 

Select & release idle host 56 milliseconds 

Migrate "null" process 43 milliseconds 

Transfer info for open files 6.1 milliseconds/file 

Flush modified file blocks 450 Kbytesjsecond 

Flush modified pages 640 Kbytesfsecond 

Fork, exec null process with migration, wait for child to exit 41 milliseconds 

Fork. exec null process locally, wait for child to exit 21 milliseconds 

Table 1: Costs associated with process migration. All measurements were performed on DECsta­

tion 3100 workstations. Host selection may be amortized across several migrations if applications 

such as pmake reuse idle hosts. The time to migrate a process depends on how many open files the 

process has and how many modified blocks for those files are cached locally (these must be flushed 

to the server). If the migration is not done at exec-time, modified virtual memory pages must be 

flushed as well. The execs were performed with no open files. 

which migration is used, the cost and frequency of eviction, and the availability of idle hosts. 

Section 8.4 draws some conclusions based on these measurements. 

8.1 Migration Overhead 

Table 1 summarizes the costs associated with migration. Host selection on DECstation 

3100 workstations takes an average of 56 milliseconds, which includes numerous file system 

interactions to obtain and then release the idle host. Process transfer is a function of some 

fixed overhead, plus variable overhead in proportion to the number of modified virtual 

memory pages and file blocks copied over the network and the number of files the process 

has open. If a process execs at the time of migration, as is normally the case, no virtual 

memory is transferred. 

All things considered, it takes about a tenth of a second to select an idle host and 

start a new process on it, not counting any time needed to transfer open files or flush 

modified file blocks to servers. This latency may be too great to warrant running trivial 

programs remotely, but it is substantially less than the time needed to compile typical 

source programs, run text formatters, or do any number of other CPU-bound tasks. 

After a process migrates away from its home node, it may suffer from the overhead of 

forwarding system calls. The degradation due to remote execution depends on the ratio 

of location-dependent system calls to other operations, such as computation and file I/0. 

Figure 3 shows the total execution time to run several programs, listed in Table 2, both 

entirely locally and entirely on a single remote host. Applications that communicate fre­

quently with the home node suffered considerable degradation. Two of the benchmarks, fork 

and gettime, are contrived examples of the type of degradation a process might experience 

if it performed many location-dependent system calls without much user-level computation. 

The rep benchmark is a more realistic example of the penalties processes can encounter: 

it copies data using TCP, and TCP operations are sent to a user-level TCP server on the 

home node. Forwarding these TCP operations causes rep to perform about 25% more slowly 
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Local versus Remote Execution 
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Figure 3: Comparison between local and remote ezecution of programs. CPU-intensive applica­

tions such as pmake and :U.TEX showed negligible effects from remote execution. Other applications 

suffered performance penalties ranging from 24% (rep), to 260% (fork), to 3200% (gettime). 

Name Description 

pmake recompile pmake source sequentially using pmake 

l.i\TE}{ run l.i\TE}{ on a draft of this paper 

rep copy a 1 Mbyte file to another host using TCP 

fork fork and wait for child, 1000 times 

get time get the time of day 10000 times 

Table 2: Workload for comparisons between local and remote ezecution. 
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Pmake Parallel Compilation of Kernel 
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Figure 4: Performance of recompiling the Sprite kernel using a varying number of hosts and the 

pmake progrom. Graph (a) shows the time to compile all the C files and then link the resulting object 

files into a single file. In addition, it shows a "normalized" curve that shows the time taken just to 

compile, further adjusted by the pmalce startup overhead of 8 seconds to determine dependencies; 

this curve represents the parallelizable portion of the pmalce benchmark. Graph (b) shows the 

speed-up obtained for each point in (a), which is the ratio between the time taken on a single host 

and the time using multiple hosts in parallel. 

when run remotely than locally. As may be seen in Figure 3, however, applications such as 

compilations and text formatting show little effect from remote execution. (In fact, execut­

ing pmake was slightly faster remotely than locally, due to obscure differences in process 

scheduling while performing remote procedure calls.) 

8.2 Applications Performance 

The benchmarks in Section 8.1 measure the component costs of migration. This section 

measures the overall benefits of migration using pmake. The first benchmark consists of 

compiling 139 Sprite kernel source files, then linking the resulting object files into a single 

file. Each pmake command (compiling or linking) is performed on a remote host using 

exec-time migration. Once a host is obtained from the pool of available hosts, it is reused 

until pmake finishes or the host is no longer available. 

Figure 4 shows the total elapsed time to compile and link the Sprite kernel using a 

varying number of machines in parallel, as well as the performance improvement obtained. 

In this environment, pmake is able to make effective use of about three-fourths of each host 

it uses up to a point ( 4-6 hosts), but it uses only half the processing power available to it 

once additional hosts are used. 

The "compile and link" curve in Figure 4(b) shows a speed-up factor of 5 using 12 

hosts. Clearly, there is a significant difference between the speed-ups obtained for the 

"normalized compile" benchmark and the "compile and link" benchmark. The difference is 
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Program 
Number of 

Sequential Time Parallel Time Speed-Up 
Files Links 

gremlin 24 1 202 44 4.59 

TF}( 36 1 416 80 5.20 

pmake 49 3 200 60 3.33 

kernel 139 1 818 167 4.90 

Table 3: Examples of pmake performance. Sequential execution is done on a single host; parallel 

execution uses migration to execute up to 12 tasks in parallel. Each measurement gives the time to 

compile the indicated number of files and link the resulting object files together in one or more steps. 

When multiple steps are required, their sequentiality reduces the speed-up that may be obtained; 

pmake, for example, is organized into two directories that are compiled and linked separately, and 

then the two linked object files are linked together. 

partly attributable to the sequential parts of running pmake: determining file dependencies 

and linking object files all must be done on a single host. More importantly, file caching 

affects speed-up substantially. As described above in Section 4.2, when a host opens a 

file for which another host is caching modified blocks, the host with the modified blocks 

transfers them to the server that stores the file. Thus, if pmake uses many hosts to compile 

different files in parallel, and then a single host links the resulting object files together, that 

host must wait for each of the other hosts to flush the object files they created. It then 

must obtain the object files from the server. In this case, linking the files together when 

they have all been created on a single host takes only 8 seconds, but the link step takes 

20-35 seconds when multiple hosts are used for the compilations. 

In practice, we don't even obtain the five-fold speed-up indicated by this benchmark, 

because we compile and link each kernel module separately and link the modules together 

afterwards. Each link step is an additional synchronization point that may be performed 

by only one host at a time. In our development environment, we typically see three to four 

times speed-up when rebuilding a kernel from scratch. Table 3 presents some examples of 

typical pmake speed-ups. These times are representative of the performance improvements 

seen in day-to-day use. 

Figure 4 and Table 3 demonstrate that the benefits of using idle hosts in parallel ade­

quately compensate for the combined overhead of host selection, migration, and forwarding 

location-dependent operations. The number of hosts that may be effectively used depends 

in part upon the relative speeds of the file server( s) and the hosts performing the compila­

tion. On Sun 3/75 workstations, for example, we often obtain a speed-up nearly equal to 

the number of hosts used, for small degrees of parallelism (up to four to six hosts); however, 

with 10 hosts compiling in parallel, the marginal improvement is small and in one case 

a Sun 3/180 file server's processor was in use 90% of the time. Twelve DECstation 3100 

workstations compiling in parallel used only 55% of a DECstation file server, which suggests 

that faster (or multiprocessor) file servers may alleviate potential server bottlenecks. 

23 



Host Total CPU Time Remote CPU Time Fraction Remote 

Hostl 241000 sees 97775 sees 40.57% 

Host2 40387 582 1.44% 

Host3 38797 6164 15.89% 

Host4 31841 8372 26.29% 

HostS 28592 8228 28.78% 

Host6 18248 4254 23.31 % 

Host7 12411 1690 13.62% 

HostS 5847 2320 39.68% 

Host9 5259 0 0.00% 

HostlO 3198 1797 56.19% 

Others 4043 1232 30.47% 

I Total 429623 132414 30.82% 

Table 4: Remote processing use over a two-week period. The ten hosts with the greatest total 

processor usage are shown individually. Sprite hosts performed roughly 30% of user activity using 

process migration. The standard deviation of the fraction of remote use was 21%. 

8.3 Usage Patterns 

We instrumented Sprite to keep track of remote execution, evictions, and the availability 

of idle hosts. First, when a process exits, the total time during which it executed is added to 

a global counter; if the process had been executing remotely, its time is added to a separate 

counter as well. (These counters therefore exclude some long-running processes that do not 

exit before a host reboots; however, these processes are daemons, display servers, and other 

processes that would normally be unsuitable for migration.) Since we started recording these 

statistics, remote processes have accounted for about 30% of all processing done on Sprite. 

Some hosts run applications that make much greater use of remote execution, executing as 

much as 50--60% of user cycles on other hosts. Table 4 lists some sample processor usage 

over this period. 

Second, we record each time a host changes from idle to active, indicating that foreign 

processes would be evicted if they exist, and we count the number of times evictions actually 

occur. To date, evictions have been extremely rare. On the average, each host changes to 

the active state only once every couple of hours, and very few of these transitions actually 

result in processes being evicted (0.01 processes per hour per host so far in a collection 

of 14 DECstations). When evictions do occur, they take about one second to migrate an 

average of about 3 processes. An average of 54 4-Kbyte pages are written per process that 

migrates. Thus, given the infrequency of eviction and the size of their modified memory, 

the efficiency of transferring the virtual address space is probably not an issue. Once the 

remote execution facility is used for larger applications, such as simulators, the average 

modified address space size is likely to increase. 

Third, over the course of a couple of months, we periodically recorded the state of 

every host (active, idle, or hosting foreign processes) in a log file. A surprisingly large 

number (60-80%) of hosts are available for migration at any time, even during the day on 
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Time Frame In Use Idle In Use 
for Migration 

weekdays 30% 65% 5% 

off-hours 7% 90% 3% 

I total 13% 1 84%1 3% 

Table 5: Host availability. Weekdays are Monday through Friday from 9:00 A.M. to 5:00 P.M. 

Off-hours are all other times. 

weekdays. This is partly due to our environment, in which several users own both a Sun 

and a DECstation and use only one or the other at a time. Some workstations are available 

for public use and are not used on a regular basis. However, after discounting for extra 

workstations, we still find a sizable fraction of hosts available, concurring with Theimer, 

Nichols, and others. Table 5 summarizes the availability of hosts in Sprite over this period. 

To further study the availability of idle hosts, we logged requests for idle hosts over 

a three-month period. Each process that used the migration library wrote a log entry 

containing the number of requests for idle hosts it made and the number of requests that 

could be satisfied. During this period, over 30,000 processes requested one or more idle 

hosts, and 76% of those processes obtained as many hosts as they requested. Somewhat 

surprisingly, given the wide availability of idle hosts, 13% of the processes were unable to 

obtain any hosts at all. Since pmake tries to obtain as many hosts as it has tasks to perform, 

it is possible for one pmake to acquire every idle host of the same architecture and prevent 

other processes from using idle hosts. The centralized server mentioned above in Section 7.1 

will be able to enforce fairness constraints and prevent the starvation we have experienced 

with a simple shared file. 

8.4 Observations 

Based on our experience, as well as those of others (V [18], Charlotte [2], and Ac­

cent [21]), we have observed the following: 

• The overall improvement from using idle hosts can be substantial, depending upon the 

degree of parallelism in an application. 

• Remote execution current accounts for a sizable fraction of all processing on Sprite. 

Even so, idle hosts are plentiful. Our use of idle hosts is currently limited more by a 

lack of applications (other than pmake) than by a lack of hosts. 

• The cost of exec-time migration is high by comparison to the cost of local process 

creation, but it is relatively small compared to times that are noticeable by humans. 

Furthermore, the overhead of providing transparent remote execution in Sprite is neg­

ligible for most classes of processes. The system may therefore be liberal about placing 

processes on other hosts at exec time, as long as the likelihood of eviction is relatively 

low. 

• The cost of transferring a process's address space and flushing modified file blocks dom­

inates the cost of migrating long-running processes, thereby limiting the effectiveness 

of a dynamic "pool of processors" approach. Although there are other environments 
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in which such an approach could have many favorable aspects, given the assumptions 

in Section 2 about host availability and workstation "ownership", using process migra­

tion to balance the load among all Sprite hosts would likely be both unnecessary and 

undesirable. 

9 History and Experience 

The greatest lesson we have learned from our experience with process migration is the old 

adage "use it or lose it." Although an experimental version of migration was operational in 

1986 [8], it took another two years to make migration a useful utility. Part of the problem 

was that a few important mechanisms weren't implemented initially (e.g., there was no 

automatic host selection, migration was not integrated with pmake, and process migration 

did not deal gracefully with machine crashes). But the main problem was that migration 

continually broke due to other changes in the Sprite kernel. Without regular use, problems 

with migration weren't noticed and tended to accumulate. As a result, migration was only 

used for occasional experiments. Before each experiment a major effort was required to 

fix the accumulated problems, and migration quickly broke again after the experiment was 

finished. 

By the fall of 1988 we were beginning to suspect that migration was too fragile to be 

maintainable. Before abandoning it we decided to make one last push to make process 

migration completely usable, integrate it with the pmake program, and use it for long 

enough to understand its benefits as well as its drawbacks. This was a fortunate decision. 

Within one week after migration became available in pmake, other members of the Sprite 

project were happily using it and achieving speed-up factors of two to five in compilations. 

Because of its complex interactions with the rest of the kernel, migration is still more fragile 

than we would like and it occasionally breaks in response to other changes in the kernel. 

However, it is used so frequently that problems are detected immediately and they can 

usually be fixed quickly. Today we consider migration to be an indispensable part of the 

Sprite system. 

We are not the only ones to have had difficulties keeping process migration running: for 

example, Theimer reported similar experiences with his implementation in V [18]. Part of 

the problem is inherent in migration, since it interacts with many other parts of the kernel. 

However, we've taken two steps to improve the maintainability of migration. The first was 

to distribute the migration code among other kernel modules as described in Section 4.4. 

The second approach was to sensitize the kernel developers to the presence of migration, 

so that they consider the potential impact on migration when making other changes. The 

maintenance load is still higher for migration than for many other parts of the kernel, but 

only slightly. 

The most complicated aspects of migration are those related to migrating open files. 

In particular, locking and updating the data structures for an open file on multiple hosts 

provided numerous opportunities for distributed deadlocks, race conditions, and inconsistent 

reference counts. Process migration has the unpleasant property of turning shared state 

into distributed shared state, which is much more difficult to manage. The access position 

of a file is one example of this effect (see Section 4.2). 

We are often asked whether it is really necessary to migrate processes at arbitrary times 

during their execution. In our current usage patterns virtually all migration occurs at exec-
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time except for occasional evictions; if migration were permitted only at exec-time, wouldn't 
the implementation be simpler and more maintainable? Furthermore, the processes we 
migrate now tend to be short-lived ones like compilations. Is eviction really necessary? 
Why not either kill the foreign processes when a user returns (since not much work would 
be lost), or just let them complete (which would take only a few seconds on average)? 

Exec-only migration would definitely be simpler than our current version since several 
pieces of state would not need to be migrated, such as virtual memory and much of the 
process's execution state. Unfortunately, open files would still need to be transferred since 
they are inherited across exec calls, and many of the issues about maintaining transparency 
during remote execution would remain. Thus much of the implementation complexity would 
still be present unless transparency were sacrificed (e.g., by not retaining open files across 
migration). The loss of eviction might not make much difference in our current environment, 
but it would make migration painful to use for long-running tasks such as simulations: the 
tasks would have to check-point their state so that migrated processes could be killed and 
restarted elsewhere when users return to their machines. In order to encourage the greatest 
possible use of migration we plan to retain our current mechanism, which allows migration 
anytime but uses it most often at exec-time. 

10 Conclusions 

Process migration is now taken for granted as an essential part of the Sprite system. 
It is used hundreds of times daily and provides substantial speed-ups for applications that 
are amenable to coarse-grain parallel processing, such as compilation. The transparency 
provided by the migration mechanism makes it easy to use migration, and eviction keeps 
migration from bothering the people whose machines are borrowed. As more people use 
Sprite, we are discovering new applications for process migration, such as long-running 
simulations. Collectively, remote execution accounts for a sizable portion of all user activity 
on Sprite. 

To date, we have intentionally been conservative in our use of migration in order to 
gain acceptance among our users. We do not use a workstation unless it has been idle 
long enough that its owner is unlikely to use it again soon, and only pmake commands are 
typically executed remotely by default. However, our measurements suggest that evictions 
would be infrequent, and inexpensive, even if we were more liberal about placing remote 
processes. In addition to encouraging the development of parallel simulators and other 
user applications for migration, we intend to explore new system-wide migration tools: for 
example, a shell (command executor) that invokes background processes on idle hosts when 
possible. We also plan to reduce the constraints on idle time to increase host availability 
along with the demand for idle hosts; we may then assess any changes in the frequency and 
cost of evictions and remote execution. 

From the outset we expected migration to be difficult to build and maintain. Even so, 
we were surprised at the complexity of the interactions between process migration and the 
rest of the kernel, particularly where distributed state was involved as with open files. It 
was interesting that Sprite's network file system both simplified migration (by providing 
transparent remote access to files and devices) and complicated it (because of the file sys­
tem's complex distributed state). We believe that our implementation has now reached a 
stable and maintainable state, but it has taken us a long time to get there. 
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For us, the bottom line is that process migration is too useful to pass up. We en­

courage others to make process migration available in their systems, but to beware of the 

implementation pitfalls. 
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